PySpark Cookbook

£25.98

PySpark Cookbook

Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python

Authors: Denny Lee, Tomasz Drabas

Dinosaur mascot

Language: English

Published by: Packt Publishing

Published on: 29th June 2018

Format: LCP-protected ePub

Size: 330 pages

ISBN: 9781788834254


Combine the power of Apache Spark and Python to build effective big data applications

About This Book

Perform effective data processing, machine learning, and analytics using PySpark

Overcome challenges in developing and deploying Spark solutions using Python

Explore recipes for efficiently combining Python and Apache Spark to process data

Who This Book Is For

The PySpark Cookbook is for you if you are a Python developer looking for hands-on recipes for using the Apache Spark 2.x ecosystem in the best possible way. A thorough understanding of Python (and some familiarity with Spark) will help you get the best out of the book.

What You Will Learn

Configure a local instance of PySpark in a virtual environment

Install and configure Jupyter in local and multi-node environments

Create DataFrames from JSON and a dictionary using pyspark.sql

Explore regression and clustering models available in the ML module

Use DataFrames to transform data used for modeling

Connect to PubNub and perform aggregations on streams

In Detail

Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. The PySpark Cookbook presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem.

You''ll start by learning the Apache Spark architecture and how to set up a Python environment for Spark. You''ll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you''ll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You''ll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark and use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command.

By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications.

Style and approach

This book is a rich collection of recipes that will come in handy when you are working with PySpark

Addressing your common and not-so-common pain points, this is a book that you must have on the shelf.

Show moreShow less