Practical Computer Vision

£22.98

Practical Computer Vision

Extract insightful information from images using TensorFlow, Keras, and OpenCV

Author: Abhinav Dadhich

Dinosaur mascot

Language: English

Published by: Packt Publishing

Published on: 5th February 2018

Format: LCP-protected ePub

Size: 234 pages

ISBN: 9781788294768


A practical guide designed to get you from basics to current state of art in computer vision systems.

About This Book

Master the different tasks associated with Computer Vision and develop your own Computer Vision applications with ease

Leverage the power of Python, Tensorflow, Keras, and OpenCV to perform image processing, object detection, feature detection and more

With real-world datasets and fully functional code, this book is your one-stop guide to understanding Computer Vision

Who This Book Is For

This book is for machine learning practitioners and deep learning enthusiasts who want to understand and implement various tasks associated with Computer Vision and image processing in the most practical manner possible. Some programming experience would be beneficial while knowing Python would be an added bonus.

What You Will Learn

Learn the basics of image manipulation with OpenCV

Implement and visualize image filters such as smoothing, dilation, histogram equalization, and more

Set up various libraries and platforms, such as OpenCV, Keras, and Tensorflow, in order to start using computer vision, along with appropriate datasets for each chapter, such as MSCOCO, MOT, and Fashion-MNIST

Understand image transformation and downsampling with practical implementations.

Explore neural networks for computer vision and convolutional neural networks using Keras

Understand working on deep-learning-based object detection such as Faster-R-CNN, SSD, and more

Explore deep-learning-based object tracking in action

Understand Visual SLAM techniques such as ORB-SLAM

In Detail

In this book, you will find several recently proposed methods in various domains of computer vision. You will start by setting up the proper Python environment to work on practical applications. This includes setting up libraries such as OpenCV, TensorFlow, and Keras using Anaconda. Using these libraries, you''ll start to understand the concepts of image transformation and filtering. You will find a detailed explanation of feature detectors such as FAST and ORB; you''ll use them to find similar-looking objects.

With an introduction to convolutional neural nets, you will learn how to build a deep neural net using Keras and how to use it to classify the Fashion-MNIST dataset. With regard to object detection, you will learn the implementation of a simple face detector as well as the workings of complex deep-learning-based object detectors such as Faster R-CNN and SSD using TensorFlow. You''ll get started with semantic segmentation using FCN models and track objects with Deep SORT. Not only this, you will also use Visual SLAM techniques such as ORB-SLAM on a standard dataset.

By the end of this book, you will have a firm understanding of the different computer vision techniques and how to apply them in your applications.

Style and approach

Step-by-step guide filled with real-world, practical examples for understanding and applying various Computer Vision techniques

Show moreShow less