Machine Learning for Text

£49.99

Machine Learning for Text

Data warehousing Data mining Information retrieval Expert systems / knowledge-based systems Machine learning

Author: Charu C. Aggarwal

Dinosaur mascot

Language: English

Published by: Springer

Published on: 4th May 2022

Format: LCP-protected ePub

Size: 22 Mb

ISBN: 9783030966232


Overview

This second edition textbook covers a coherently organized framework for text analytics, which integrates material drawn from the intersecting topics of information retrieval, machine learning, and natural language processing. Particular importance is placed on deep learning methods. The chapters of this book span three broad categories:

1. Basic algorithms

Chapters 1 through 7 discuss the classical algorithms for text analytics such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis.

2. Domain-sensitive learning and information retrieval

Chapters 8 and 9 discuss learning models in heterogeneous settings such as a combination of text with multimedia or Web links. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods.

3. Natural language processing

Chapters 10 through 16 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, transformers, pre-trained language models, text summarization, information extraction, knowledge graphs, question answering, opinion mining, text segmentation, and event detection.

Comparison with the First Edition

Compared to the first edition, this second edition textbook (which targets mostly advanced level students majoring in computer science and math) has substantially more material on deep learning and natural language processing. Significant focus is placed on topics like transformers, pre-trained language models, knowledge graphs, and question answering.

Show moreShow less