Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector

£44.99

Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector

Production and quality control management Agribusiness and primary industries Energy industries and utilities Agricultural science Machine learning

Author: Vítor João Pereira Domingues Martinho

Dinosaur mascot

Collection: SpringerBriefs in Applied Sciences and Technology

Language: English

Published by: Springer

Published on: 21 February 2024

Format: LCP-protected ePub

ISBN: 9783031546082


Introduction

This book presents machine learning approaches to identify the most important predictors of crucial variables for dealing with the challenges of managing production units and designing agriculture policies. The book focuses on the agricultural sector in the European Union and considers statistical information from the Farm Accountancy Data Network (FADN).

Objectives

Presently, statistical databases present a lot of information for many indicators and, in these contexts, one of the main tasks is to identify the most important predictors of certain indicators. In this way, the book presents approaches to identifying the most relevant variables that best support the design of adjusted farming policies and management plans. These subjects are currently important for students, public institutions and farmers. To achieve these objectives, the book considers the IBM SPSS Modeler procedures as well as the respective models suggested by this software.

Intended Audience

The book is read by students in production engineering, economics and agricultural studies, public bodies and managers in the farming sector.

Show moreShow less