£109.50
Aging, Shaking, and Cracking of Infrastructures
From Mechanics to Concrete Dams and Nuclear Structures
This self-contained book focuses on the safety assessment of existing structures subjected to multi-hazard scenarios through advanced numerical methods. Whereas the focus is on concrete dams and nuclear containment structures, the presented methodologies can also be applied to other large-scale ones.
The authors explains how aging and shaking ultimately lead to cracking, and how these complexities are compounded by their random nature. Nonlinear (static and transient) finite element analysis is hence integrated with both earthquake engineering and probabilistic methods to ultimately derive capacity or fragility curves through a rigorous safety assessment.
Expanding its focus beyond design aspects or the state of the practice (i.e., codes), this book is composed of seven sections:
Fundamentals
theoretical coverage of solid mechnics, plasticity, fracture mechanics, creep, seismology, dynamic analysis, probability and statistics
Damage
that can affect concrete structures, such as cracking of concrete, AAR, chloride ingress, and rebar corrosion,
Finite Element
formulation for both linear and nonlinear analysis including stress, heat and fracture mechanics,
Engineering Models
for soil/fluid-structure interaction, uncertainty quantification, probablilistic and random finite element analysis, machine learning, performance based earthquake engineering, ground motion intensity measures, seismic hazard analysis, capacity/fragility functions and damage indeces,
Applications to dams
through potential failure mode analyses, risk-informed decision making, deterministic and probabilistic examples,
Applications to nuclear structures
through modeling issues, aging management programs, critical review of some analyses,
Other applications and case studies
massive RC structures and bridges, detailed assessment of a nuclear containment structure evaluation for license renewal.
This book should inspire students, professionals and most importantly regulators to rigorously apply the most up to date scientific methods in the safety assessment of large concrete structures.